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Abstract

Event extraction plays an important role in natural language
processing (NLP) applications including question answering
and information retrieval. Traditional event extraction relies
heavily on lexical and syntactic features, which require inten-
sive human engineering and may not generalize to different
datasets. Deep neural networks, on the other hand, are able
to automatically learn underlying features, but existing net-
works do not make full use of syntactic relations. In this pa-
per, we propose a novel dependency bridge recurrent neural
network (dbRNN) for event extraction. We build our model
upon a recurrent neural network, but enhance it with depen-
dency bridges, which carry syntactically related information
when modeling each word. We illustrates that simultaneously
applying tree structure and sequence structure in RNN brings
much better performance than only uses sequential RNN. In
addition, we use a tensor layer to simultaneously capture the
various types of latent interaction between candidate argu-
ments as well as identify/classify all arguments of an event.
Experiments show that our approach achieves competitive re-
sults compared with previous work.

Introduction

Event extraction plays an important role in various NLP ap-
plications including question answering and information re-
trieval (Yang et al. 2003; Glavaš and Šnajder 2014). Figure 1
shows an example of the event extraction task, which aims to
discover events (die and attack) with triggering words (died
and fired) and their corresponding arguments (e.g., Bagh-
dad, cameraman). Typically, event extraction can be divided
into several subtasks: trigger identification, argument identi-
fication, and argument role classification, as defined by the
ACE 2005 dataset, a benchmark for event extraction (Grish-
man, Westbrook, and Meyers 2005).

In early years, researchers have designed various features,
e.g., lexical and contextual ones, for event extraction (Grish-
man, Westbrook, and Meyers 2005; Ji and Grishman 2008;
Lu and Roth 2012). Such methods, however, require exten-
sive human engineering, which also largely affects model
performance.

Recently, neural networks are widely applied in NLP
tasks including event extraction, as they can automatically
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extract underlying features. Chen et al. (2015) explore con-
volutional neural networks (CNNs) and Nguyen, Cho, and
Grishman (2016) explore recurrent neural networks (RNNs)
in the event extraction task. A potential limitation of the
above methods is that they do not make use of syntactic
features during the design of neural architectures. Nguyen,
Cho, and Grishman (2016) use a binary vector to model de-
pendency relations, but the method is still weak in terms
of syntactic modeling. Another limitation in existing ap-
proaches is the lack of argument-argument interaction. The
observation is that jointly modeling all argument candi-
dates enables a more global view of the relationship among
arguments, which is beneficial to argument identification
and classification. In Figure 1, for example, when decid-
ing the role of Palestine Hotel with the trigger fire,
we find that American tank and the Palestine
Hotel have the common dependency parent fire. There-
fore, if American tank is an argument, then the prob-
ability of the Palestine Hotel also being an argu-
ment is increased.

In this paper, we propose a dependency bridge recurrent
neural network (dbRNN) for event extraction. Our model is
built upon a bidirectional recurrent neural network (RNN)
with long short term memory (LSTM) units, but we enhance
it with dependency bridges to connect syntactically related
words. We then build a tensor layer on each pair of two can-
didate arguments, enabling intensive argument-level infor-
mation interaction. During training, we adopt a max-margin
criterion to jointly extract event triggers and arguments.

We evaluated dbRNN on the ACE 2005 dataset. Exper-
imental results show that our model outperforms previous
state-of-the-art approaches in terms of all subtasks. We also
made efforts in visualizing tensor features to better under-
stand our model.

Task Description

We describe the event extraction task by following the con-
vention in Automatic Content Extraction (ACE) 20051; Ta-
ble 1 summarizes relevant terminologies. As said, there are
three subtasks in event extraction:
• Trigger identification, which aims to identify the most im-

portant word that characterizes an event and to classify it

1https://catalog.ldc.upenn.edu/ldc2006t06

The Thirty-Second AAAI Conference
on Artificial Intelligence (AAAI-18)

5916



In Baghdad , a cameraman died when an American tank fired on the Palestine Hotel

Place

Place

Target

Victim
Instrument Target

Die Attacknmod
nsubj

advcl
nsubj nmod

Figure 1: An example of event mentions. There are two event mentions that share three arguments, namely the Die event
mention triggered by “died”, and the Attack event mention triggered by “fired”. The arrows under the sentence is the sample of
dependency parse edges.

Entity an object or a set of objects in one of the semantic categories
Entity mention a reference to an entity, usually a noun phrase (NP)
Event trigger main word which most clearly expresses an event occurrence
Event arguments the entity mentions that are involved in an event
Argument roles the relation of arguments to the event where they participate

(35 total possible roles defined by ACE)
Event mention a phrase or sentence within which an event is described

including trigger and arguments

Table 1: Glossary (Grishman, Westbrook, and Meyers
2005).

into 33 predefined, fine-grained categories. For evaluation
purposes, a trigger is considered correct if both the iden-
tified word and its type match the groundtruth reference.

• Argument identification. Each argument of an event is an
entity mention, which has already been tagged by the ACE
corpus. This subtask aims to identify if an entity mention
is an argument for a particular event. We say an argument
is correctly identified if the argument itself and its event
type are correct.

• Argument classification. This subtask aims to determine
the role (e.g., “victim”) of an identified argument. An ar-
gument is correctly classified if it is correctly identified
and its role matches the reference.

Approach

In this section, we elaborate the proposed model. We start
from the basics of bidirectional long short term memory
RNNs. Then we introduce the notion of dependency bridges
and the tensor interaction for argument-argument modeling.
Finally, we present the max-margin criteria by which event
triggers and arguments are jointly learned.

Long Short Term Memory

The recurrent neural network (RNN) is suitable for model-
ing sequential data as it keeps a set of hidden states, which
evolve over discrete time steps according to the input. How-
ever, vanilla RNNs are difficult to train because of gradi-
ent exploding or vanishing problem during backpropagation
over time. Long short term memory (LSTM) units are pro-
posed to addresses this problem (Hochreiter and Schmidhu-
ber 1997).

Formally, LSTM states at a time step t are a collection of
vectors in R

d: an input gate it, a forget gate ft, an output

gate ot, a memory cell ct, and a candidate memory cell state
c̃t and a hidden state ht. The entries of the gating vectors it,
ft and ot are in [0, 1]. We refer to d as the memory dimension
of the LSTM. The LSTM update equations are⎡

⎢⎣
it
ft
ot
c̃t

⎤
⎥⎦ =

⎡
⎢⎣

σ
σ
σ

tanh

⎤
⎥⎦ (WL ·

[
ht−1
xt

]
+ bL)

ct = it � c̃t + ft � ct−1
ht = ot � tanh(ct)

(1)

where xt is the input at the current time step, σ denotes the
logistic sigmoid function, and � denotes element-wise mul-
tiplication. WL ∈ R

4d×2d and bL ∈ R
4d×1 are parameters.

Intuitively, the forget gate controls the extent to which the
previous memory cell is forgotten, the input gate controls
how much information is input to each unit, and the output
gate controls the exposure of the internal memory state. The
hidden state vector in an LSTM unit is therefore a gated,
partial view of the state of the unit’s internal memory cell.
Since the value of the gating variables vary for each vector
element, the model can learn to represent information over
multiple time scales.

Bidirectional LSTM

We enhance the above LSTM with bidirectionality, which is
proposed in Schuster and Paliwal (1997). The hidden states
of bidirectional RNN (BiLSTM) are computed both in for-
ward and backward ways at each time step. We denote the
outputs of the forward and backward LSTMs as h→t and h←t ,
respectively.

h→t = LSTM→(h→t−1, xt)

h←t = LSTM←(h←t+1, xt)
(2)

Then the output at time t is ht = [h→t , h←t ].

Dependency Bridges

In this part, we propose dependency bridges over Bi-LSTM
for event extraction.

Figure 1 shows the dependency parse tree of a sentence.
We see that there is an “advcl” edge between “died” and
“fired” and a “nmod” edge between “fired” and “hotel.”
These kinds of dependency edges contain useful information
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A cameraman died when tank fired on the hotel

Figure 2: Dependency bridge on LSTM. Apart from the last LSTM cell, each cell also receives information from former
syntactically related cells.

about temporal, consequence, conditional, purpose, etc., and
are shown to be helpful for joint feature-based event extrac-
tion in (Li, Ji, and Huang 2013). Since traditional RNN can-
not take advantage of dependency relations directly, we pro-
pose to add dependency edges to the BiLSTM architecture
as a shortcut that brings syntactically related information di-
rectly to the current LSTM cell. We call this “dependency
bridges.”

The proposed dependency bridges are shown in Figure 2.
We assign each type of dependency relations (e.g., nsubj,
dobj) a weight; different directions of the same dependency
relation also have different weights. For example, the for-
ward direction of “nsubj” has weight a+nsubj , the backward
direction has weight a−nsubj .

During LSTM information propagation, the dependency
bridge information mainly affects the hidden layer of the
LSTM cell. In the tth step, we denote the set of dependency
bridges linked to the current cell as Sin. Each element in
Sin is a pair (index, type) representing the source index of
the dependency edge and the dependency type, respectively.
Then the hidden layer is computed as

ht = ot � tanh(ct) + dt �
( 1

|Sin|
∑

(i,p)∈Sin

aphi

)
(3)

where dt is a new gate we set to avoid the dependency infor-
mation affect original information too much. dt is computed
the same way as other gates:

dt = σ(Wd

[
ht−1
xt

]
+ bd) (4)

where Wd ∈ R
d×2d, bd ∈ R

d×1 are parameters.
The main difference between DB and previous tree-

based methods, such as tree-LSTM (Tai, Socher, and Man-
ning 2015), tree-CNN (Mou et al. 2015b; 2015a; 2016),
recursive-NN (Socher et al. 2013; 2011), is that all of them
are using tree method alone while we are trying to use tree
method and sequential method together.

Trigger Classification

When extracting event triggers, we enumerate every noun,
verb, and adjective in the sentence as candidate triggers. The

encoded representation hs of a sentence of length NL is the
concatenation of the final forward and backward outputs,
hs = [h→NL

, h←1 ]. Then we concatenate the corresponding
BiLSTM’s output of the candidate trigger htri and the sen-
tence’s encoded vector S together as the candidate trigger’s
feature C = [htri, hs]. Then we feed the feature into a mul-
tilayer perceptron

HC = tanh(WcC + bc)

OT = softmax(WTHC + bT )
(5)

where Wc ∈ R
nc×2nhu , bc ∈ R

nc , WT ∈ R
nET×nc , bT ∈

R
nET are parameters for training. Here, nc is the length of

HC , nhu is the BiLSTM’s hidden layer size, and nET is the
number of event types (including the “NoEvent” type). Each
entry of OT ∈ R

nET represents the probability of an event
type.

Argument Classification

When classifying the arguments, we need to consider the
argument-argument interaction. The argument-argument in-
teraction is very important in argument identification and
classification. Intuitively, when considering all the candi-
date arguments together, the differences and commonality
between them are much easier to be figured out, which is
beneficial to argument identification and classification. The
argument-argument interaction includes various types of ar-
gument relations, such as, whether two candidate arguments
have the same dependency parent, whether two candidate ar-
guments are semantically coherent, etc.

Sha et al. (2016) proposed to split the argument-argument
interaction into two categories: positive and negative. In real
case, these two interactions can only determine whether to
identify the arguments. As for which role to take, we need
much more complicated interactions like “whether these two
candidate arguments have opposed roles”. In this paper, we
propose to represent the interactions by a vector.

When considering all candidate arguments simultane-
ously, as is shown in Figure 3, we collect all of their cor-
responding hidden layers (the BiLSTM’s output) as a matrix
H ∈ R

nhu×nA , where nA is the number of candidate argu-
ments.
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Figure 3: The architecture of dependency-bridge recurrent neural network.

For each pair of arguments, we use a feed-forward layer
to predict the relationship between the two arguments. Each
argument-argument relationship is represented by a vector
of length nT . Given the hidden layers H = {hi|i ∈ [1, nA]},
This process is stated as follows:

Tij = tanh(Wd[hi, hj ] + bd) (6)

where Wd ∈ R
nT×2nhu , bd ∈ R

nT are transformation ma-
trix and bias vector.

Then we can obtain a 3D tensor T which directly models
the interactions. Intuitively, each element of Tij represents
a kind of argument-argument relationship. Inspired by Col-
lobert et al. (2011), we use max-pooling to capture the most
useful interaction feature over arguments as shown in Equa-
tion 7.

Fmaxp(i, k) = maxnA
j=1 T (i, j, k) (7)

Where Fmaxp ∈ R
nA×nT is the max-pooled interaction fea-

ture of the nA candidate arguments.
To judge whether two candidate arguments tend to occur

together, we also add the argument-argument self-matching
attention (SMA) matrix into our architecture for capturing
pos and neg interactions proposed by Sha et al. (2016).
Different from them, the value in our SMA matrix ranges
from 0 to 1 instead of only three values (−1, 0, 1). We use a
feed-forward layer to compute the SMA matrix A:

Aij = softmax(tanh(WaTij + ba)) (8)
An element in SMA matrix represents the possibility of two
candidate arguments occurring in one event. Then we multi-
ply A and the candidate arguments’ hidden layer matrix H
so that the SMA matrix dynamically collects evidence from
all attended candidate arguments in the sentence, given by

FA = AH�, FA ∈ R
nA×nhu (9)

Since the hidden layer matrix H contains lexical features
and contextual features, then we concatenate the interaction
features FA and Fmaxp, the contextual features H , and the
trigger’s feature HC together

L = [FA, Fmaxp, H
T , HC ⊗ enA

] (10)

where HC ⊗ enA
means to copy HC for nA times, and

L ∈ R
nA×(nT+2nhu+nc). In L, each candidate argument has

a corresponding feature vector Li with length (nT +2nhu+
nc), which contains lexical features, contextual features, in-
teraction features, and trigger’s features. Then Li is fed into
a classifier:

OR(i) = softmax(WRLi + bR) (11)

where OR(i) ∈ R
1×nR is the final output of the i-th can-

didate argument and OR(i, j) is the score for argument role
j.

Max-Margin Training for Joint Model

We use the Max-Margin criterion to train our model. Intu-
itively, the Max-Margin criterion provides an alternative to
probabilistic, likelihood-based estimation methods by con-
centrating directly on the robustness of the decision bound-
ary of a model (Taskar et al. 2005).

In order to simultaneously extract the event trigger and
arguments, we use Y (xi) to denote the set of all possible
event types (pi) and role label sequences (yi) for the candi-
date event2 in a given sentence xi.

We define a structured margin loss Δ(yi, pi, ŷ, p̂) based
on a predicted role label sequence ŷ, a predicted event type
p̂, a given correct role label sequence yi, and a given correct
event type pi:

Δ(yi, pi, ŷ, p̂) = κ

nA∑
j=1

1{yij �= ŷj}+ 1{pi �= p̂} (12)

where κ is a discount parameter. The loss is proportional to
the number of candidate arguments with an incorrect role
label or incorrect event type in the predicted event. For xi

in an input instance with a role label sequence yi and an
event type pi, we define a sentence-level score by the sum
and multiplication of network scores for joint extraction of

2The event triggered by the candidate trigger.
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event triggers and arguments:

s(xi, yi, pi; θ) = OT (pi) + μ
n∑

j=1

OR(j, yij) (13)

where μ is a discount parameter, and the parameters of our
model are represented by θ. For a given training instance
(xi, yi, pi), the score of the correct event type pi and role
label sequence yi will be larger up to a margin to other pos-
sible event type and role label sequences (p̂, ŷ) ∈ Y (xi):

s(xi, yi, pi; θ) ≤ s(xi, ŷ, p̂; θ) + Δ(yi, pi, ŷ, p̂) (14)
This leads to the regularized objective function for m train-
ing examples:

J(θ) =
1

m

m∑
i=1

li(θ) +
λ

2
‖θ‖2

li(θ) = max
ŷ∈Y (xi)

(s(xi, ŷ, p̂, θ) + Δ(yi, pi, ŷ, p̂)

− s(xi, yi, pi, θ))

(15)

By minimizing this objective, the score of the correct event
type and role label sequence (pi, yi) is increased and score
of the highest scoring incorrect event type and sequence
(p̂, ŷ) is decreased.

Due to the hinge loss, the objective function is not differ-
entiable. We use subgradient method (Ratliff, Bagnell, and
Zinkevich 2007) to compute a gradient-like direction. The
subgradient of Equation 15 is:

∂J

∂θ
=

1

m

∑
i

(∂s(xi, ŷmax, p̂max; θ)

∂θ

−∂s(xi, yi, pi; θ)

∂θ

)
+ λθ

(16)

where (p̂max, ŷmax) is the event type and role label se-
quence with the highest score in Equation 15. To compute
the network parameter θ, we use Adadelta (Zeiler 2012) with
shuffled mini-batches to minimize the objective.

Experiment

Data

We evaluate our dbRNN model on the ACE 2005 dataset.
To comply with previous work, we use a pre-defined split
of the documents provided by Li, Ji, and Huang (2013), in
which the newswire texts in ACE2005 dataset are divided
into 529 training documents (14,840 sentences), 30 devel-
oping documents (863 sentences) and 40 testing documents
(672 sentences).

Word embeddings are obtained using WORD2VEC3 and
trained by the default “text8” data with embedding size 100.
The hyperparameters of our model are chosen as in Table 2
according to the development set.

When predicting the candidate arguments, we use Stan-
ford constituency parser4 to parse every sentence in the cor-
pus, and then take the phrases attached to NP nodes as
the candidate arguments. Also, we use Stanford dependency
parser5 to decide the dependency bridges.

3http://code.google.com/p/word2vec/
4https://nlp.stanford.edu/software/lex-parser.shtml
5https://nlp.stanford.edu/software/stanford-dependencies.shtml

Hyperparameters
Word embedding size d = 100
Score function discount μ = 0.8
Margin loss discount κ = 0.2
Regularization λ = 10−4
Dropout fraction 0.5
Hidden unit number nhu = 100
Hidden unit number nc = 100
Interaction feature length nT = 150

Table 2: Hyperparameters of our model.

Overall Performance

We compare our performance with the following stare-of-
the-art methods:

1. Cross-Event is proposed by Liao and Grishman (2010),
which uses document level information to improve the
performance of ACE event extraction;

2. Cross-Entity is proposed by Hong et al. (2011), which
uses cross-entity inference for event extraction;

3. JointBeam is the method proposed by Li, Ji, and
Huang (2013), which extracts events based on struc-
ture prediction. They manually designed several discrete
features about arguments, which is certainly far from
enough;

4. DMCNN is proposed by Chen et al. (2015), which is the
first approach based on deep neural network.

5. JointEventEntity is proposed by (Yang and Mitchell
2016), which jointly extracting events and entities.

6. RBPB is proposed by Sha et al. (2016), which considers
two kinds of argument relationships (positive and nega-
tive). Different from us, they only deal with two argument
relationships while our tensor layer can deal with count-
less number of argument relationships.

7. JRNN is proposed by Nguyen, Cho, and Grish-
man (2016), which uses a bidirectional RNN and man-
ually designed features to extract events. Difference from
us, they only take dependency relations as input features
instead of model them directly into architecture. In addi-
tion, they use the features of JointBeam for arguments.

Table 3 shows the overall performance with gold-standard
entities (in ACE2005 dataset). Table 4 shows the perfor-
mance with predicted candidate arguments (take NPs as can-
didate arguments). Notice that trigger / argument identifica-
tion is integrated into trigger / argument classification, that
is to say, if a candidate trigger / argument is assigned the
“NoEvent” / “NoRole” label during classification, then it is
not identified.

From the results in Table 3, we can see that the dbRNN
model we proposed with automatically learned features
achieves the best performance among all of the compet-
ing methods. dbRNN outperforms the feature-based model
(RBPB) by 2.0% in trigger classification and 4.9% by argu-
ment classification, which is significant (Wilcoxon signed-
rank test, p < 0.05). Our model can also outperform the
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Method
Trigger Identification Argument Argument
+Classification (%) Identification (%) Role (%)
P R F1 P R F1 P R F1

Cross-Event 68.7 68.9 68.8 50.9 49.7 50.3 45.1 44.1 44.6
Cross-Entity 72.9 64.3 68.3 53.4 52.9 53.1 51.6 45.5 48.3
JointBeam 73.7 62.3 67.5 69.8 47.9 56.8 64.7 44.4 52.7
DMCNN 75.6 63.6 69.1 68.8 51.9 59.1 62.2 46.9 53.5
RBPB 70.3 67.5 68.9 63.2 59.4 61.2 54.1 53.5 53.8
JRNN 66.0 73.0 69.3 61.4 64.2 62.8 54.2 56.7 55.4
dbRNN 74.1 69.8 71.9 71.3 64.5 67.7 66.2 52.8 58.7

Table 3: Overall performance with gold-standard entities.

Method Trigger Argument Argument
id+cl id id+cl

JointBeam 64.2 38.0 35.0
RBPB 67.8 55.4 43.8
JointEventEntity 68.7 50.6 48.4
dbRNN 69.6 57.2 50.1

Table 4: Overall performance with predicted entities.

Method Trigger Argument Argument
id+cl id id+cl

Our model without DB 69.0 62.7 54.6
+ binary DB 71.2 63.9 56.8
+ typed DB (full) 71.9 64.4 57.2

Table 5: Comparison after adding dependency bridges (DB).
The numbers are F1 scores. We compare with two baselines:
no dependency bridges considered and only binary depen-
dency bridges.

deep learning method (JRNN) by 1.6% in trigger classifica-
tion and 3.3% by argument classification (p < 0.05). This
demonstrates the effectiveness of the proposed method. In
Table 4, our result is also 0.5% and 1.2% higher than the
JointEventEntity method in trigger classification and argu-
ment classification (p < 0.05). We found that dbRNN sig-
nificantly outperforms previous methods in argument iden-
tification / classification. This demonstrate that our model
generally achieves higher performance than previous work
including human engineered features as well as existing NN
models.

Effect of Dependency Bridges

The effect of dependency bridges is shown in Table 5.
“DB(binary)” means all weights of the dependency relations
are set to 1. We can see that after adding binary depen-
dency bridge, the F1 value of all the three evaluation met-
rics (trigger classification, argument identification, argument
role classification) are significantly improved (Wilcoxon
signed-rank test, p < 0.05). After we set all weights of
the dependency relations trainable, in the “+ DB” row,
the performances gain a further improvement, which illus-
trated the effectiveness of dependency bridges. The visual-
ization of trained weights is shown in Figure 4, we can see
that dependency relationship type dobj receives the high-

Figure 4: The visualization of trained weights of each de-
pendency relations.

Method 1/1 1/N All
dbRNN-SMA 59.5 67.0 64.1

Argument dbRNN-MP 59.7 64.8 62.0
Identification dbRNN-TL 59.6 55.8 58.2

dbRNN 59.9 69.5 67.7
dbRNN-SMA 54.6 56.5 56.0

Argument Role dbRNN-MP 54.7 55.8 55.2
Classification dbRNN-TL 54.9 52.3 53.1

dbRNN 54.6 60.9 58.7

Table 6: Comparison between dbRNN and dbRNN with-
out tensor layer. (The latter is denoted as “dbRNN-TL”.)
Also, “dbRNN-SMA” means to only cast SMA away from
the whole model and “dbRNN-MP” means cast the max-
pooling feature matrix away. Here, we report the argument
performance since the tensor layer is only applied to argu-
ment extraction.

est weight after training. According to grammar knowledge,
dobj should be an informative relationship for event ex-
traction task, and our model considers dobj as the most
influential dependency type automatically.

Effect of Tensor Layer

Table 6 illustrates that the method based on tensor transfor-
mation layer (dbRNN) outperforms the method without ten-
sor layer (dbRNN-TL). It shows that the interaction features
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(a) Die1 (b) Die2 (c) Fire1 (d) Fire2 (e) SMA (die)

Figure 5: Visualization of several slices of the interaction feature in the tensor layer. The processed sentence is as Figure 1.
Trigger of (a) and (b) is “die”. Trigger of (c) and (d) is “fire”. Darker green means stronger interaction. (e) is the visualization
of SMA matrix when the trigger is “die”. Easy to show, the candidate arguments Baghdad and tank tend to relate to each
other.

extracted by tensor layer is extremely useful for argument
extraction. Specifically, dbRNN yields a 13.7% improve-
ment for argument identification and 8.6% improvement for
argument classification on the sentences with multiple en-
tities (1/N ) (Wilcoxon signed-rank test, p < 0.05). This
improvement is much larger than in sentences with a single
entity (1/1). Similar trend can also be observed in the two
subparts of tensor later (SMA and MP). This demonstrates
that the proposed dbRNN can effectively capture more valu-
able clues than the dbRNN-TL, especially when a sentence
contains more than one entities.

Analysis of “Interaction Features”

We use the sentence in Figure 1 as an example to illustrate
the captured interaction features. Since there are two triggers
(die and fire) in the sentence, we select two slices which
are relatively easier to be explained out of tensor T ’s nT

slices (T is the tensor-shaped interaction feature in Figure 3)
based on the two triggers. Figures 5a and 5c are from the
same position of the nT slices in F , so does Figures 5b and
Figure 5d.

We can see that Figures 5(a) and 5(c) capture whether
two candidate arguments have the same dependency par-
ent. When the trigger is die, we found that Baghdad and
cameraman have stronger interactions. When the trigger is
fire, we found that tank and hotel have stronger in-
teractions. This is identical to the dependency structure in
Figure 1. Likewise, Figures 5(b) and 5(d) capture whether
two candidate arguments are semantically coherent. When
the trigger is die, we found that Baghdad, cameraman
and tank are semantically relevant and human tend to iden-
tify them as arguments, so the interaction between any of
them are stronger. Although there are also some slices of T
that cannot be directly explained, our tensor layer still have
captured many useful interaction features according to the
interaction feature visualization.

We also visualize the SMA matrix in Figure 5(e). It cor-
responds to the same example in Figure 1 when the trigger
is die. We can see that Baghdad and tank tend to oc-
cur together. This fact illustrates that the SMA matrix suc-
cessfully captures the attention between different candidate
arguments.

Related Work

Event extraction is important in the knowledge mining field.
Previous work can be classified to two kinds of methods: (1)
traditional approaches using a set of elaborately designed
features that are extracted by textual analysis and linguistic
knowledge (2) deep neural network based approaches.

In traditional approaches, some focus on lexical fea-
tures (Grishman, Westbrook, and Meyers 2005; Huang and
Riloff 2012; Li, Bontcheva, and Cunningham 2005; Liu and
Strzalkowski 2012), while others considered broader con-
text when deciding the role fillers (Gu and Cercone 2006;
Patwardhan and Riloff 2009). Also, there are systems tak-
ing the whole discourse features into consideration (Liao
and Grishman 2010; Hong et al. 2011; Huang and Riloff
2011). Ji and Grishman (2008) even consider the topic-
related documents, so they propose the cross-document
method. Liao and Grishman (2010), Hong et al. (2011), Li,
Ji, and Huang (2013), Lu and Roth (2012) and Yang and
Mitchell (2016) use a series of global features (for exam-
ple, the occurrence of one event type lead to the occurrence
of another) to improve the role assignment and event clas-
sification performance. Sha et al. (2016) consider two of
the argument relationships: positive and negative. Huang et
al. (2016) use AMR as symbolic features and simultaneously
extract events and event schemas.

Dynamic multi-pooling convolutional neural network
(DMCNN) (Chen et al. 2015) is the first deep neural
network-based approach. (Nguyen, Cho, and Grishman
2016) enhance bidirectional RNN with manually designed
features to extract events. Based on these above methods,
we use dependency relations (inspired by (Qian et al. 2017))
as a new structure and learn argument-argument interaction
feature.

Conclusion

This paper proposes a novel deep neural network ar-
chitecture, called dependency-bridge recurrent neural net-
work (dbRNN) for the task of event extraction. dbRNN in-
troduces dependency bridges to RNN so that syntactical in-
formation can be explicitly considered in the model. Then
a tensor layer is applied to capture various of argument-
argument interactions when extracting events, which signif-
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icantly improve the performance of argument identification
and classification. In addition, we jointly extract event trig-
gers and arguments by a max-margin criterion so that the
two subtasks can benefit each other. The experiment results
show the effectiveness of our proposed method.

Acknowledgments

We would like to thank Lili Mou for his helpful discus-
sions. We also thank reviewers for their helpful advice.
The research work is supported by the National Key Re-
search and Development Program of China under Grant
No. 2017YFB1002101 and the National Science Foundation
of China under Grant No. 61772040. The contact author is
Zhifang Sui.

References

Chen, Y.; Xu, L.; Liu, K.; Zeng, D.; and Zhao, J. 2015. Event
extraction via dynamic multi-pooling convolutional neural
networks. In ACL, 167–176.
Collobert, R.; Weston, J.; Bottou, L.; Karlen, M.;
Kavukcuoglu, K.; and Kuksa, P. 2011. Natural language
processing (almost) from scratch. JMLR 12:2461–2505.

Glavaš, G., and Šnajder, J. 2014. Event graphs for infor-
mation retrieval and multi-document summarization. Expert
systems with applications 41(15):6904–6916.
Grishman, R.; Westbrook, D.; and Meyers, A. 2005. Nyu’s
english ACE 2005 system description. ACE 5.
Gu, Z., and Cercone, N. 2006. Segment-based hidden
markov models for information extraction. In ACL, 481–488.
Hochreiter, S., and Schmidhuber, J. 1997. Long short-term
memory. Neural computation 9(8):1735–1780.
Hong, Y.; Zhang, J.; Ma, B.; Yao, J.; Zhou, G.; and Zhu, Q.
2011. Using cross-entity inference to improve event extrac-
tion. In ACL, 1127–1136.
Huang, R., and Riloff, E. 2011. Peeling back the layers:
detecting event role fillers in secondary contexts. In ACL,
1137–1147.
Huang, R., and Riloff, E. 2012. Bootstrapped training of
event extraction classifiers. In EACL, 286–295.
Huang, L.; Cassidy, T.; Feng, X.; Ji, H.; Voss, R. C.; Han, J.;
and Sil, A. 2016. Liberal event extraction and event schema
induction. In ACL, 258–268.
Ji, H., and Grishman, R. 2008. Refining event extraction
through cross-document inference. In ACL, 254–262.
Li, Y.; Bontcheva, K.; and Cunningham, H. 2005. Using un-
even margins svm and perceptron for information extraction.
In CoNLL, 72–79.
Li, Q.; Ji, H.; and Huang, L. 2013. Joint event extraction via
structured prediction with global features. In ACL, 73–82.
Liao, S., and Grishman, R. 2010. Using document level
cross-event inference to improve event extraction. In ACL,
789–797.
Liu, T., and Strzalkowski, T. 2012. Bootstrapping events and
relations from text. In EACL, 296–305.

Lu, W., and Roth, D. 2012. Automatic event extraction with
structured preference modeling. In ACL, 835–844.
Mou, L.; Men, R.; Li, G.; Xu, Y.; Zhang, L.; Yan, R.;
and Jin, Z. 2015a. Natural language inference by tree-
based convolution and heuristic matching. arXiv preprint
arXiv:1512.08422.
Mou, L.; Peng, H.; Li, G.; Xu, Y.; Zhang, L.; and Jin, Z.
2015b. Discriminative neural sentence modeling by tree-
based convolution. arXiv preprint arXiv:1504.01106.
Mou, L.; Li, G.; Zhang, L.; Wang, T.; and Jin, Z. 2016. Con-
volutional neural networks over tree structures for program-
ming language processing. In AAAI, 1287–1293.
Nguyen, H. T.; Cho, K.; and Grishman, R. 2016. Joint event
extraction via recurrent neural networks. In NAACL, 300–
309.
Patwardhan, S., and Riloff, E. 2009. A unified model of
phrasal and sentential evidence for information extraction.
In EMNLP, 151–160.
Qian, F.; Sha, L.; Chang, B.; Liu, L.; and Zhang, M. 2017.
Syntax aware LSTM model for semantic role labeling. In
Proceedings of the 2nd Workshop on Structured Prediction
for Natural Language Processing, 27–32.
Ratliff, N. D.; Bagnell, J. A.; and Zinkevich, M. 2007. (on-
line) subgradient methods for structured prediction. In AIS-
TATS, 380–387.
Schuster, M., and Paliwal, K. K. 1997. Bidirectional recur-
rent neural networks. Signal Processing, IEEE Transactions
on 45(11):2673–2681.
Sha, L.; Liu, J.; Lin, C.-Y.; Li, S.; Chang, B.; and Sui, Z.
2016. Rbpb: Regularization-based pattern balancing method
for event extraction. In ACL, 1224–1234.
Socher, R.; Huang, E. H.; Pennington, J.; Ng, A. Y.; and
Manning, C. D. 2011. Dynamic pooling and unfolding re-
cursive autoencoders for paraphrase detection. In NIPS.
Socher, R.; Perelygin, A.; Wu, J. Y.; Chuang, J.; Manning,
C. D.; Ng, A. Y.; and Potts, C. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment treebank.
ACL.
Tai, K. S.; Socher, R.; and Manning, C. D. 2015. Improved
semantic representations from tree-structured long short-
term memory networks. arXiv preprint arXiv:1503.00075.
Taskar, B.; Chatalbashev, V.; Koller, D.; and Guestrin, C.
2005. Learning structured prediction models: A large margin
approach. In ICML, 896–903. ACM.
Yang, B., and Mitchell, M. T. 2016. Joint extraction of events
and entities within a document context. In NAACL, 289–299.
Association for Computational Linguistics.
Yang, H.; Chua, T.-S.; Wang, S.; and Koh, C.-K. 2003. Struc-
tured use of external knowledge for event-based open domain
question answering. In SIGIR, 33–40.
Zeiler, M. D. 2012. Adadelta: An adaptive learning rate
method. arXiv preprint arXiv:1212.5701.

5923


